成人高考帮手网

您好,欢迎访问成人高考帮手网

大学专科数学学什么_大学专科数学学什么课程

2024-08-06 21:35分类: 专科学校 阅读:

大学专科数学学什么_大学专科数学学什么课程

随着科技的发展,大学专科数学学什么的今日更新也在不断地推陈出新。今天,我将为大家详细介绍它的今日更新,让我们一起了解它的最新技术。

文章目录列表:

1.大学数学有哪些课程
2.大学数学专业课程有哪些
3.大学专科有高数吗?
4.大学数学专业有哪些数学课程?
5.大学数学专业都有哪些课程要详细

大学专科数学学什么_大学专科数学学什么课程(图1)

大学数学有哪些课程

『壹』 大学理科数学有哪些课程

高等数学

线性代数

复变函数

常微分方程

数学物理方法

概率统计

另外,根据专业不同,可能还会有其他科目

『贰』 大学数学包括哪些

“大学里读的数学”统称“大学数学”,教育部教育司属下有“大学数学课程指导委内员会”。下面有很多“分容指导委员会”而“工科数学课程分指导委员会”只是其中的一个。

“工科数学课程分指导委员会”管辖的课程有“高等数学”、“线性代数”、“概率论与数理统计”、“复变函数与积分变换”、“数理方程与特殊函数”、“计算方法”六门。

经管类的少点,并且高等数学(经管类一般称为微积分)

《高等数学》课程的内容为:函数与极限,一元函数微分学,一元函数积分学,空间解析几何,多元函数微分学,多元函数积分学(重积分与曲线、曲面积分),级数(数项级数、幂级数、傅立叶级数),微分方程,场论初步(梯度、散度、旋度)。

『叁』 大学数学专业都有哪些课程要详细

专业基础类课程:

解析几何

数学分析I、II、III

高等代数I、II

常微分方程

抽象代数

概率论基础

复变函数

近世代数

专业核心课程:

实变函数

偏微分方程

概率论

拓扑学

泛函分析

微分几何

数理方程

专业选修课:

离散数学(大二上学期)

数值计算与实验(大二下学期)

分析学(1)

代数学(1)

伽罗瓦理论

复分析

代数数论

动力系统引论

基础数论

偏微分方程(续)

一般拓扑学

理论力学

数学建模

微分拓扑

调和分析

常微分方程几何理论

分析专题选讲

组合数学与图论

范畴论

紧黎曼曲面

黎曼几何初步

偏微近代理论

交换代数

代数拓扑

同调代数

流形与几何

小波与调和分析

李群李代数

分析学Ⅱ

代数学Ⅱ

代数K理论

代数几何

多复变基础

泛函分析(续)

『肆』 大学数学专业基础课程有哪些

专业基础课有来数学分析、高等代自数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。

『伍』 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

大学数学专业课程有哪些

 选择专业时,大学数学专业需要学什么课程是各位学生门的疑问之一。下面是由我为大家整理的“大学数学专业课程有哪些”,仅供参考,欢迎大家阅读。

  大学数学专业课程

 1、数学分析

 这门课是对大家从小学到大学的一门数学总结课程,也是一门从1到实数的课。之所以这么说,是因为这门课的内容,大家可能并不陌生。从上幼儿园我们就学会了数数,数数这个过程看上去十分简单。但其实里面蕴含了这门课当中非常重要的一些概念,也是后面证明很多定理必要的手段。幼儿园的时候,我们数的数是自然数,到了小学可能就能数到整数了。但很多人应该不知道,有理数也可以被数出来。可能刚开始接受这样的概念的时候有点反直觉,这就是我们之后要提到的我们的直觉可能有的时候并不符合规范化的思考方式。自从毕达哥拉斯学派发现了根号2以后,数学就到了实数的范畴了,这算是高中的尽头了。数学分析作为研究生的实分析的课程的基础,研究了实数的各种性质。在实数的性质中,最重要的可能就是实数的完备性公理,简单来讲这个公理的一部分内容就是,如果我知道一块沙滩上的沙子的数量是有限的且一定有沙子,那么这片沙滩的沙子数量存在一个上确界。有了实数我们就可以继续讨论实数上的数列sequence。1,2,3,…就是一个数列,但数列不仅仅是表现的那么简单,这实际上是一个从实数到自然数的映射。类似的看上去不是映射的映射关系还有概率里的随机变量。

 2、抽象代数

 抽象代数属于数学系里对人的抽象思维比较有考验的一门课了。简单介绍一下,相信大家对集合应该都非常了解。整个现代数学就是建立在集合论上的学科。那么,简单的集合看上去十分清晰,当集合中的元素数量非常大的时候,集合是不是看上去不那么整洁了呢。同时,集合又满足了无序性,两辆元素之间没有任何关系,显得有些杂乱无章。这个时候,如果我们在这个集合上加上一种结构,是不是就能让他变得有规律些呢。这种结构,我们叫做二元操作,即两两元素之间可以相互作用产生新的元素,如此一来,集合中的每一个元素都和另外的元素产生了某种关系,从而联系起来,形成一个有序的整体。这种二元操作,直观一点可以是加法,乘法。也可以是任何一种操作。有了这种操作,再加上这个集合满足这个操作下的一些条件,我们就产生了一个新的物种,叫做群。

 3、随机过程

 随机过程更是和我们的生活离不开关系了,这是一门搭建在概率论的基础上的课程。过程,很明显,有始,但不一定有终。这蕴含了一个有限的状态空间。举个简单的例子,大家去理发店的时候是不是有时候会遇到等待的情况呢?假如通过大量的统计计算发现一个单位时间内出现在这个理发店的人服从泊松分布,在不同时间出现在理发店的人数其实就是一个泊松过程。

 这三门课程各具特色,也是每个学校数学专业中都非常热门的课。其中有分析类,代数类,还有运筹学的课。数学离不开数,但数只是表面,数背后严谨的逻辑是作为普通人学数学的真正价值之所在。数学的发展往往非常具有超前性,很多东西百年以后可能在能用得上。因此我们可以不会证明高深莫测的定理,但一定得懂得欣赏逻辑思维的美。

  拓展阅读:数学专业就业前景和方向

 1、基础数学:适合做研究或从事教学

 基础数学又叫纯粹数学,即按照数学内部的需要,或未来可能的应用,对数学结构本身的内在规律进行研究,而并不要求同解决其他学科的实际问题有直接的联系,只是以纯粹形式研究事物的数量关系和空间形式。

 基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法。微分几何、数学物理、偏微分方程等都属于基础数学范畴。人们耳熟能详的陈景润证明“1+2”哥德巴赫猜想的故事就发生在这个领域。

 就业前景:

 该专业需要学生具备扎实的数学理论基础,为高等院校和科研机构输送数学、应用数学及相关学科的研究生。前几年相对于数学学科其他几个专业来说,就业面相对狭窄,但是这几年各门与数学相关的学科发展迅速,这方面所需要的研究和教学人才的数量也大大增加,尤其是与数学相关联学科的教学人才大多数需要扎实的基础数学基础,因此需求量也增多了。

 2、计算数学:涉及众多交叉学科

 计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。

 专业背景:要求考生具备基础数学、应用数学、信息技术、计算机科学、数据处理和系统分析,工程学、以及数字图像等学科知识。

 研究方向:工程问题数值方法、发展方程与动力系统的数值方法、数值逼近与数字图像处理、计算机图形学与计算机软件、光学与电磁学中的数学问题等。

 就业前景:

 站在数学的肩膀上,这个方向的同学考博或出国占极大优势。研究生毕业如果从事程序开发工作,薪水一般较高,但工作强度也相对较大。

 另外,这个专业的毕业生还可到各大高校从事教学工作,既可以进一步开展研究,也为培养专业人才作贡献。

 3、概率和统计:政府部门需求量大增

 作为数学的分支,概率学是研究随机事件的一门科学技术,涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。统计学是关于收集、整理、分析和解释统计数据的科学,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。

 概率论与数理统计是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。随着人类社会各种体系的日益庞大、复杂、精密,计算机的广泛使用,概率统计的重要性将越来越大。

 就业前景:

 主要到企业、事业单位和经济、政府管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作。就业机会非常广泛,一些金融部门和单位对统计学专业人才的需求甚至已经超过了一些热门的经济学专业。尤其是近年来,政府部门决策强调科学性,统计部门的力量增大,因此每年政府招收公务员时,对统计方面的毕业生需求也大增。

 4、应用数学:发展空间最广阔

 应用数学包括两个部分,一部分就是与应用有关的数学,另外一部分是数学的应用,即以数学为工具,探讨解决科学、工程学和社会学方面的问题。应用数学主要是应用于两个领域,一是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发;二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。

 应用数学与纯数学最大的区别就是与实际的结合:设法解决自然现象与社会发展提出的数学问题,并将其探讨结果应用回到自然界与社会中去。

 就业前景:

 无论是进行科研数据分析、软件开发、三维动画制作,还是从事金融保险、国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。该专业毕业生的就业去向也大多集中在与信息产业相关的各大集团公司、科研设计单位、金融机构等,并且在出国或深造上也有很大的优势。据相关人士介绍,如果本科学应用数学,报考硕士时选择发展方向时就有很大优势,尤其是金融与经济比本专业毕业生有大的优势,也能向更高层次发展。

 5、数学教育

 就业前景:

 需求大,待遇稳定。

 就业分析:我国数学教师需求量最大。数学教师十分抢手。拓宽师资渠道,面向社会招聘教师,已成为教育人事制度改革的重要举措。这无疑为数学教育专业毕业生就业提供了很大的发展空间。

大学专科有高数吗?

大学专科需要学习高数,也需要学习英语。

专科是以培养技术型人才为主要目标,即专科培养目标是实践化,是在完成中等教育的基础上培养出一批具有高等教育知识,同时又有一定专业知识和技术技能的人员,其知识的讲授是以够用为度,实践为本。根据中国大陆教育体制教育分为幼儿教育、初等教育、中等教育和高等教育。

专科教育是在完成中等教育基础上进行的比本科教育学习年限短的职业教育,同本科教育、研究生教育一样,都是我国高等教育体系中的组成部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

工科、理科、财经类研究生考试的基础科目。

?扩展资料

专升本科的定义

专科升本科有三种情况:统招专升本、自考专升本和成教专升本。

专科毕业自考本科属于我国承认认可学历。《高等教育自学考试暂时条例》条例总则第五条明确规定:“高等教育自学考试的专科(基础科)、本科等学历层次,与普通高等学校的学历层次水平相一致。”我国相关规定,高等教育自学考试毕业生享有同普通高校同类毕业生一样的待遇。

自考本科同普通高校同类毕业生一样,可以参加全国统一的研究生考试、可以报考国家公务员、出国留学等。据了解,加拿大、英国、美国、韩国等近三十个国家均承认我国自考学历证书,接受我国自考本科毕业生报考出国留学,报考条件已经降为没有学士学位证书也可以出国留学了。

自考是一个艰苦的学习过程,难度仅低于普通高校考试,自考本科锻炼了考生的学习能力、恒心、毅力及自我控制能力,自1981年开办以来,自考为我国培养了三百多万专本科毕业生。

百度百科-专科

百度百科-高等数学

大学数学专业有哪些数学课程?

1、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

2、高等数学

指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。广义来讲初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

3、概率论与数理统计

概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。

4、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

5、解析几何

解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。

严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。

6、抽象代数

抽象代数又称近世代数,它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

抽象代数包含群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。

参考资料:

百度百科-高等代数

参考资料:

百度百科-高等数学

参考资料:

百度百科-概率论与数理统计

参考资料:

百度百科-复变函数论

参考资料:

百度百科-解析几何

参考资料:

百度百科-抽象代数

大学数学专业都有哪些课程要详细

专业基础课有数学分析、高等代数、解析几何、概率论与数理统计。这三者是老三门,将来如果考研时要用到的。近代数学的新三门是拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。另外其他的一些常见的包括数学分析、微分几何、高等几何、常微分方程、偏微分方程、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。

1.数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。

2.数学专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。

3.计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。

好了,关于“大学专科数学学什么”的讨论到此结束。希望大家能够更深入地了解“大学专科数学学什么”,并从我的解答中获得一些启示。

微信号咨询

请添加微信号咨询:19071507959

在线报名

郑重声明:本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系成人高考帮手网,本方将及时处理。本文的引用仅供读者交流学习使用,不涉及商业目的。本文内容仅代表作者观点,网站不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。如需转载本方拥有版权的文章,请联系成人高考帮手网注明“转载原因”。未经允许私自转载将保留追究其法律责任的权利。

上一篇:大学专科数学_大学专科数学基础知识

下一篇:大学专科数学学哪些_大学专科数学学哪些课程

相关推荐

关注我们

    成人高考帮手网
返回顶部